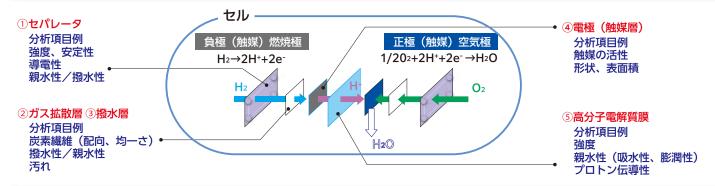
総合解析

Multilateral Analysis of Fuel Cell Battery


燃料電池の部材分析

セパレータ/ガス拡散層/撥水層/電極(触媒層)/電解質膜

高分子固体型燃料電池 (PFEC) の主要部材として、セパレータ、ガス拡散層 / 撥水層、電極 (触媒層)、電解質膜が挙げられる。それぞれの部材に求められる役割、性能を踏まえた分析を実施することが大事である。

● 燃料電池の分析概要

Overview of Analysis for FC

♥ 分析箇所と主な分析手法

The List of Analytical Methods and Tests for FC

部材	キーワード	分析項目
セパレータ	安定性	親水基耐久性評価(昇温脱離法)、耐酸試験
	導電性	走査拡がり抵抗顕微鏡(SSRM)
	親水性・撥水性	湿度可変 DFM、化学力顕微鏡(CFM)、接触角、滑落角
	強度	各種機械物性評価
ガス拡散層 撥水層	炭素繊維	SEM 観察
	親水性・撥水性	化学力顕微鏡(CFM)、ダイナミックフォース顕微鏡(DFM)
	汚れ	SEM-EDS、TOF-SIMS、ナノIR
	拡散層のガス透過、熱伝導性	水蒸気透過試験(カップ法)、熱伝導率
電極(触媒)	触媒活性	サイクリックボルタンメトリー (CV)、対流ボルタンメトリー (HDV)、電位サイクル試験
	形状、分散、表面積	TEM、3D-TEM
	触媒インクの分析	パルス NMR
電解質膜	構造・形態(膜厚、接合界面)	XRD、SAXS、固体 NMR(主鎖、側鎖の比率)、DSC、SEM 観察、TEM 観察
	異物や付着物の分析	IR、TOF-SIMS
	ガス透過性	水蒸気透過試験(カップ法)
	物性評価	粘弹性、SPM
	微量金属定量	ICP-MS
MEA	形態観察(構造、膜厚、接合界面)	SEM 観察、表面形状観察、TEM-EDS、3D-TEM
	抽出水中のイオン成分、微量金属定量	IC 分析(特にアニオン類)、ICP-MS
	抽出水中の有機成分定性	LC-MS 分析、LC-MS/MS 分析
	接着剤の物性	硬化挙動(パルス NMR)、接着強度、粘弾性
水素タンク	樹脂硬化度	パルス NMR、FT-IR
	樹脂中の微量成分	水分量(TG-DTA)、低分子量成分(GC/MS、HS-GC/MS)
	耐圧性	製品中の炭素繊維、ガラス繊維含有率
樹脂全般	物性評価	熱物性(熱伝導率、熱収縮、線膨張係数)、機械物性(引張、引張せん断曲げ、3 点曲げ、 各種疲労、TMA、DMA、粘弾性、動的ねじり粘弾性)、体積変化率、気体透過率
	破損	破面解析